
MISRA C:2012
Cure or Curse

Paper presented at the

Advanced Engineering

Conference

November 2014

First Edition
 by

Eur Ing Chris Hills BSc (Hons),
C. Eng., MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
Adv-Eng 14

MISRA C:2012
Adv-Eng 14

2library.phaedsys.com

MISRA C:2012
Adv-Eng 14

3 library.phaedsys.com

MISRA-C started in 1996 as part of the MISRA

series of reports on automotive software development.

MISRA-C was originally published in 1998 as Guidelines

for the Use of the C Language in Vehicle Based Software

and aimed at the UK automotive market. However,

Programming Research, LDRA and Chris Hills, CTO

of Phaedrus Systems, pushed the document to a wider

audience. It soon found a home across the whole

embedded, real time and critical systems markets, not

just in the UK but globally. This meant that the second

version of MISRA-C, published in 2004, changed its title

to Guidelines for the Use of the C Language in Critical Systems.

Since 2004 the majority of the MISRA-C working group

have come from the defence and aerospace industries

with automotive representation being a minority

Over the 16 years since its first appearance MISRA-C

has become the world’s most widely used C coding

standard. Either as straight MISRA-C or when used as

the basis for company coding standards where formal

MISRA-C compliance is not required, MISRA-C is in use

from Japan, heading west, all the way to San Francisco.

But whilst many promote MISRA-C some call it

MISERY-C. Is MISRA-C a curse or cure?

MISRA C:2012
Adv-Eng 14

4library.phaedsys.com

that are flagged by the standard as “undefined”,

“implementation defined” and “unspecified”.

The problem is further exacerbated by the

undeniable fact that most software people do not

understand C. Certainly, after 17 years of involvement

with C standardisation at MISRA, BSI and ISO levels,

I do not know anyone who fully comprehends the

whole language and its use where many things are

implementation defined.

This sometimes means that a user may not understand

the subtleties of the problem that a particular MISRA rule

is intended to address and so do not see what the rule is

trying to achieve. This in turn can lead to inappropriate

application of MISRA-C which in some cases can cause

more problems than the guidelines solve.

MISRA-C is there to solve a problem. But it appears it

has also created a problem.

What is this problem it is trying to solve? Basically,

the C language needs taming.

C, as originally devised, has an ethos of “trust the

programmer”. That means that, unlike many other

programming languages, there no were built-in

safeguards.

C is famously NOT strongly typed.

It is quite legal to store a double (say 32 bits) in a

char (probably 8 bits) and there is no warning

required of the loss of 3 bytes of data.

It is quite legitimate (syntactically) to increment a

pointer way past the end of an array.

Not to mention the ever expanding list of things

MISRA C:2012
Adv-Eng 14

5 library.phaedsys.com

Often the first question that few programmers can

answer correctly is, “Which C are you using?” The

response is often “ANSI-C” , “Standard C”, “Embedded

C”, “C89” and some times also erroneously “C99” The

progression of the C language is shown above. Since 1990

C has been an ISO standard. It is driven by an international

committee on which the ANSI committee is represented

as one among any National Bodies including the UK. C

has now been an ISO (internationally) regulated language

for 25 years and is defined by ISO/IEC 9899:1990,

Programming languages—C (C99) and then more recently

by ISO/IEC 9899:2011, Programming languages—C (C11)

The problem is exacerbated when people ask which

books to read to learn C. Often the “Bible” of K&R

(Kernighan and Ritchie, The C Programming Language)

is cited. Edition 1 is over 36 years old (and dare I say older

than most who are asking the question). The second

edition, whilst a mere 26 years old, is still older than the

version of C the vast majority of C programmers will use.

The other problem is most books on C are a LOT

shorter than the standard(s) they are referencing. None of

them contain more than a fraction of the ever expanding

C standard. The current C standard has more than three

times the pages of K&R 2nd Ed and the first ISO-C

standard. Two that do contain the standard are on page 13.

Why is this a problem? Simply because the vast

majority of C programmers have never seen a copy of

the ISO C standard, let alone read it. If you have not

read (I am not going to get into “understand”) the ISO C

standard how can you program in C?

In answer to the question “Which C?” most cross

compilers for the embedded market are C95 (with

extensions). By 2010 most had evolved from a C90 engine

with additions to a C99 engine with omissions. Very

few (if any?) compilers for the embedded and critical

systems market have been a full implementation of C99.

This includes GCC which only loosely follows ISO-C

anyway. Then of course the C used for cross compilers

for embedded systems will have extensions and

restrictions for the target architecture and hardware.

This is particularly the case with the standard library;

where for a “self hosted” system very little is mandated

by the C standards. No one really knows C. This is the

Curse of C

MISRA C:2012
Adv-Eng 14

6library.phaedsys.com

This graph shows the expansion of the C language

over more than three decades. Remember that most

(but not all) compilers in the embedded market are

somewhere between C95 (that is C90 + Amendment

1 and 3 Technical Corrigendum’s) and C99. There are

signs, in late 2014, that some parts of C11 may find

their way into some compilers. A Program Manager

for a major embedded compiler company said in 2013

that their compilers would be ISO–C 2011 compliant

“where C11 touched C99” and it was something they

had already implemented as C99. So while there will be

claims of C11 compliance/compatibility I suspect it will

more marketing than engineering.

The point is that in practice no working C programmer

really understands C and the vast majority have never

actually read the C standard: particularly the most

important part - the infamous Annex J (in C99 parlance).

This addresses portability issues and lists unspecified,

undefined and implementation defined behaviour. It

covers 25 pages!

This is why MISRA-C is needed: to tame the

dangerous parts of the C language and remove many

of the common problems. This in turn will cut down

debugging time and save money. This was, along with

safety, one of the original reasons for MISRA-C. The

90’s were the era of “if you don’t have the time to do it

properly when will you have the time to fix the errors?”

The UK car industry had enough problems with time

to market without the increasing volume of software in

cars adding to it. However the problems are the same in

most other industries where software is embedded into

products.

MISRA C:2012
Adv-Eng 14

7 library.phaedsys.com

MISRA-C should be used with static analysis partly

because you should not be programming in C without

static analysis anyway!

When the first static analyser for C (lint) was built it

was to detect legal but suspicious constructs, A LOT of

LEGAL C is DANGEROUS according to Denis Ritchie,

writing in 1993 about the first lint that was constructed in

1976. Even before K&R wrote the first language reference

for C in 1978 and over a decade before ISO C there were

problems with C being mis-used.

Programmers like to try and prove how clever they are

with C. Brian Kernighan had a comment that debugging

is twice as hard as writing code. So if you write code to

the best of your ability…

It seems that lint (static code analysis) was intended to

be part of the standard C compiler chain and certainly it

was on UNIX. The problem was it never survived on the

leap to the PC development platforms. Many of us did

use lint in the 80’s on PC’s but most never started the habit

and it seems universities never pushed it. The culture of

“If it compiles it must be OK.” started to prevail.

You can read about Steve Johnon, the father of static

analysis at: http://en.wikipedia.org/wiki/Stephen_C._

Johnson

Since the original lint, high end static code analysers

have developed into very powerful code analysers

that can produce many code metrics and enforce local

coding standards as well as rigorously analyse code

with con-figurations for many dialects of C. In the

embedded world most compilers have extensions for the

hardware architecture, such as specific IO and registers.

Before using a Static Code Analyser, check its pedigree

to ensure that it can handle the specific dialect of C that

you are using.

There are some free static code analysers - but take

care as some have not been maintained and so have not

kept up with the language or compilers. Also many have

not really been properly tested.

MISRA C:2012
Adv-Eng 14

8library.phaedsys.com

To make C safer, MISRA-C restricts the use of parts

of the language, these include legal C that is known to be

problematic, misused constructs and the misunderstood

parts of C. (This is a larger set than you might think.) These

are all areas where many programmers, often erroneously,

think they know how the dangerous things work.

As the C language is both evolving and expanding,

what may have been correct in C90 is not the same in

C99. Even worse the compiler may be a fuzzy mix of C90

and C99, despite claims to be one or the other. This is

where a good static analyser, properly configured, pays

dividends.

MISRA-C is also evolving and expanding. The

evolution is using feedback the tens of thousands of

users who are implementing projects using the rules.

Static analysis companies have wanted clarification on

wording they regarded as ambiguous. So, apart from

removing ambiguities MISRA-C had increasing amount

of explanation, rationales and examples. It also means

that it makes no sense to read only the headline rules.

MISRA C:2012
Adv-Eng 14

9 library.phaedsys.com

The chart above shows the relationship of the number

of pages to the number of rules in some popular coding

standards

Power of 10: 	10 rules 2 pages,

Neutrino: 	 38 rules 89 pages

Cert-C: 	 265 rules 682 pages

MISRA-C1: 	 127 rules 68 pages

MISRA-C2: 	 142 Rules 111 pages

MISRA-C3: 	 159 Rules 256 pages

Since, as we have argued before, most programmers

don’t have, let alone have read, the ISO C standard,

MISRA has to include a lot of explanation of the way

C works, or doesn’t, in order to explain why the rule is

there. However MISRA-C is not a replacement for books

on C.

The feedback has also resulted in an increase in

guidance on how MISRA-C should be used, particularly

for deviations, that is reasoned arguments for not using a

particular MISRA-C rule.

MISRA C:2012
Adv-Eng 14

10library.phaedsys.com

The MISRA-C Curse is that many only read the

headline rules and not the supporting text for the

rule. MISRA-C:2012 has attempted to change this by

shortening the headline rule and adding a rational and

amplification, making rule usable only by reading all

three parts (and, of course, any exceptions). A further

problem is that many only read the chapter containing

the rules and not the rest of the document, which

explains the how and why of implementing the rules,

without which MISRA-C compliance can not be claimed.

This is required reading.

One of the results of not reading and understanding

the context in the supporting chapters is project managers

calling for 100% MISRA-C rule enforcement with no

deviations. This is not possible. If MISRA-C is used there

WILL be deviations: it is not possible to do otherwise.

The follow on is that some look for a “MISRA-C checker”

without doing static code analysis. Whilst some of the

MISRA-C rules are not statically enforceable the majority

are, and are an enhancement to static code analysis. This

is why most static code analysis tools can enforce a large

number of the MISRA-C rules (typically 80% of them).

It is pointless to either manually check for MISRA-C

compliance or use a tool that does not do static analysis

at the same time.

A “tick box” culture to implementing MISRA-C has

developed. As well as giving the programming team

many problems, it can also produce horrendous source

code that while technically meeting the rules negates

their spirit or intent. There have been many cases of

code written to “silence the MISRA checker” rather

than address the underlying problem.

The MISRA-C team are often asked to give an

opinion on a constructed problem. When the answer

is “don’t do it that way in the first place” they are then

asked to rule on the specifics of the example. The

questioner is looking for a way to circumvent the letter

of the MISRA rule and wants to avoid what would be

the good engineering practice of redesigning the code

to work in a better way.

MISRA C:2012
Adv-Eng 14

11 library.phaedsys.com

Only 6% of the MISRA-C rules are Mandatory: that is

rules that are applicable 100% of the time. Therefore we

hope that 99.9999% of MISRA-C users will deviate the

rules in an appropriate manner.

We are regularly asked about deviations. Firstly we

are asked “How do we deviate?” This is discussed in the

two papers referenced at the end of this paper.

Secondly we hear from people who have been told,

“100% MISRA-C with no deviations. [TICK]” This

instruction is always from people who don’t understand

what MISRA-C is or how to implement it.

This is one of the places where MISRA-C can be

counter productive. A manager demanding 100%

compliance doesn’t realise that he is dangerously

handicapping the project. The team will have to fight

with the standard and resort to time consuming and, in

some cases, dangerous, tricks to get round the warnings

from the code analysers. They will waste time and

produce hideous and less efficient code.

In most presentations on MISRA-C by MISRA-C team

members and tool vendors with MISRA-C checkers, the

speaker will tell the audience you are going to have to

deviate some rules and this is NOT a tick box or simple

decision. It requires thought and consideration. YOU

have to do this on YOUR responsibility and it will be

different for every project.

A4 size Copies of this slide are available signed for

your manager’s office wall!

Deviations WILL be required. Just as the rain must

fall (but too much is a flood).

MISRA C:2012
Adv-Eng 14

12library.phaedsys.com

MISRA-C is the cure that tames the C language and

helps to make it more predictable with fewer surprises.

The support for MISRA-C in static code analyzers

encourages the use of static analysis and automated

source code checking by rigorous tools. This can cut

the test and debug phase drastically. Over the years

reports and studies have shown anything between 25%

and 40% savings on project time by using a good static

code analyzer and MISRA-C. However, using MISRA-C

without a static code analyzer to check the source is

pointless, and will probably do more harm than good

and certainly not give the gains mentioned above.

The MISRA-C curse is that people think they know

more than they do about C. I know a highly experienced

C trainer who says he learns more about C every time a

new MISRA-C appears.

We on the MISRA-C working group are also

constantly learning, despite most of us being involved in

C standards, and in making C tools. We have, on average

over 25 year’s industrial experience. The MISRA-C team

draws on experience in two ways. Some members are

on the standards panels and some members are making

some of the world’s leading C analysis tools though all

have a background in writing code on real projects. We

also have direct and regular contact with the developers

of the world’s leading C compilers. Some time we may

not know about a feature of C but we always know an

expert who does. (Come to that often when we think we

know we still check!) On the other hand we have lot of

contact with real implementations in our company’s or

our customer’s projects. We see what actually happens

on millions of lines of C over thousands of projects.

The other part of the MISRA Curse is that MISRA-C is

often badly implemented on projects. This is partly due to

management not understanding that deviations are not

a bad thing, not recognizing the need for a compliance

matrix etc, nor the need for static analysis tools. It is also

partly due to programmers not always understanding

the rules and/or C as well as they think they do. This can

mean that badly implemented MISRA-C can do as much

harm as good…. But all is not lost!

MISRA C:2012
Adv-Eng 14

13 library.phaedsys.com

This presentation was a short look, just 12 minutes

on the Advanced Engineering 2014 show floor. As a

perspective, Feabhas, the training company (www.

feabhas.co.uk) present MISRA-C courses. The “over view”

takes a whole day and the full course is four full days!!!

The two 45 minute presentations above provide a

halfway house. These were given as part of the MISRA-C

workshops in the 2013 and 2014 Device Developer

Conferences.

The 2013 document explains why MISRA-C might do

more harm than good on a project, outlining some of the

more common problems in trying to use the guidelines.

The 2014 document goes on to talk about how to implement

MISRA-C in a way that it makes maximum improvement.

The two presentations above are available from

the Phaedrus Systems Library under Conference

Presentations

http://www.phaedsys.com/library/presentations.

html

Bibliography
BSI, The C Standard (incorporating Technical

Corrigendum 1), Wiley 2003, 978-0-470-84573-8 (This is

the complete C99 with the rationale)

Derek Jones, The New C Standard: An Economic and

Cultural Commentary, 2008 (also C99) free from

ht tp://www.coding-guidel ines.com/cbook/

cbook1_1.pd

MISRA-C 2013 Workshop: Why MISRa-C won’t save

your project

h t t p ://w w w. s a f e t yc r i t i c a l . i n f o/l i b r a r y/

presentations/MISRA-C3-0001.pdf

MISRA-C 2014 Workshop: Implementing

MISRa-C:2012

h t t p ://w w w. s a f e t yc r i t i c a l . i n f o/l i b r a r y/

presentations/MISRA-C3-0002.pdf

The Art in Embedded Systems
comes through Engineering discipline.

MISRA C:2012
workshop

MISRA C:2012 Curse or cure
Advanced Engineering
Conference
November 2014

First edition November 2014

© Copyright Chris A Hills 2014

The right of Chris A Hills to be identified as

the author of this work has been asserted by him

in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus Systems Library is a collection of useful

technical documents on development. This includes

project management, integrating tools like PC-lint to

IDE’s, the use of debuggers, coding tricks and tips. The

Library also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library.phaedsys.com

