
Imagine to Invent a Language v13 minimized

As basis we define a piece of real hardwire and will implement it just using the PC – replace all of the hardware
necessary with Keyboard – PC – Screen. The minimized version just uses the PW LED of the ones shown.

The real hardware consists of a few LEDs and a few Push-Button Switches. 1 LED PW on its own, 4 LEDs represent
OUTPUTs, 4 LEDs represent INPUT levels, and 4 LEDs more for Additional Functions; each “pin” can be either HIGH
or LOW, 1 or 0 - and we end up with the header line for function and a line for the logic level. The 4 O, I and A values
are set in a way to represent binary values, so you can count up and down later using the same display.

 PW T3 T2 T1 O3 O2 O1 O0 I3 I2 I1 I0 A3 A2 A1 A0

 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1

For now, we just want to set and reset these bits to 0 or 1. As programming exercise

But describing, how this should be programmed, is often more difficult than starting, thinking, designing and going
through the process. So, let’s get started and “imagine to define” a new computer language. At least the basics.

We want to have it done in a very easy way to be easily understood, so no difficult constructs in our language yet.

All normal ASCII characters can be used and are allowed to define our commands.

But we still have to separate these commands from each other, and we do it as in a normal writing – so a SPACE will
do this. And from now on we call these commands WORDS as in normal writing.

SPACE - 1 is as such the first word as just defined
Programming is one activity we have to do, but we have to make sure that we can add comments as well, explaining
what the program does. So, a wall between the two areas is a good idea to divide program and explanations. The
keyboard gives us for example two options \ and /. As dividing needs the / , the answer is clear: \ - the back slash
will be used as indicator to tell the computer, that the rest of the line is for comments and ignored by the computer.

SPACE \ - word 2 after SPACE
There are many aspects of programming we have to cover. For example, we have to set up a way to send ASCII
characters to the display. Putting this text within 2 “ quotes “ would be a good way to define the text. And we have
to define a command to send characters to the screen. We will just use in general the . (full stop) for this. And
combined with the two quotes we know now already how to send the usual HELLO WORLD to the screen: .” HELLO
WORLD “ . Try it: enter . “HELLO WORLD “ , but nothing happens yet. It is actually very clear why: the computer
does not know that you have finished; entering ENTER/<cr> is used for this. Push the ENTER key after the .” HELLO
WORLD “ <cr> and do not forget the separating SPACES. Now the computer answers HELLO WORLD. We can do
already what the other languages show off with. And the . on its own we deal with later.

SPACE \ . .” xx “ - now 5 words
It would nice, if we could define a way to combine what we know and call it something new. Like a paragraph we
can relate to. We have to tell the computer though, how that construct/“paragraph” starts and where it ends.
A : will start the new definition and a ; ends it.

SPACE \ . .” xx “ : ; - now 7 words
Let us use the HELLO WORLD as an example. Let us define our first new word, give it the name DISPLAYIT:
: DISPLAYIT .” HELLO WORLD “ ; when we finish with the <cr> at the end, the computer will answer OK, which
means understood. If we enter now DISPLAYIT <cr> , the HELLO WORLD appears on the screen. Enter the same
DISPLAYIT, and another HELLO WORLD is stuck onto the first one.

It would be nice if the new HELLO WORLD could appear underneath the first one. A word CR does the job when we
normally type, so we use it here as well as a new command.

SPACE \ . .” xx “ : ; CR - now 8 words
We modify our : DISPLAYIT .” HELLO WORLD “ ; to : DISPLAYITCR .” HELLO WORLD “ CR ; <cr> Job
done. The computer answers OK, understood. And every time we enter DISPLAYITCR <cr>, the same block is
displayed, one underneath the other now as we wanted.
As well it would be nice to be able to clean the display page, and the word PAGE does the job: all of the text is
deleted and we end up with a clean screen page – nothing on it. Our cursor at the top left position.

SPACE \ . .” xx “ : ; CR PAGE - now 9 words
We have to put the LED status somewhere, and we have to be able to change it, so we call them VARIABLEs and
store information there. We need 16 of them as we store a bit per variable / LED for now. We use a new word ! to
store info into them and use @ to get the contents back from a VARIABLE.

SPACE \ . .” xx “ : ; CR PAGE VARIABLE ! @ - now 12 words, all of the Forth words needed .
This is now the end of PART 1a. More difficult constructs and defining how it works together continues in PART 2.

End of Part 1 – more at http://preview.tinyurl.com/hfwf7y4 and http://preview.tinyurl.com/znwssvr

http://preview.tinyurl.com/hfwf7y4
http://preview.tinyurl.com/znwssvr

\ IMAGINE TO INVENT A LANGUAGE in 2 pages, do a small application v12 ExMark Nov2016

\ INCLUDE C:\VFXTESTAPP\TESTAPPv10.f

\ We want to display these 2 lines on the screen and set these bits to 0 and 1.

\ PW_T3_T2_T1 O3_O2_O1_O0 I3_I2_I1_I0 A3_A2_A1_A0 set XXh/l

\ 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

\ All of the Forth Words used and in the sequence as described above here:

\ SPACE \ . ." xx " : ; CR PAGE VARIABLE ! @

\ Define the text lines to display

: TEXT0 ." INVENT A LANGUAGE, do a samll application v4 ExMark Oct2016 " CR ;

: TEXT1 ." PW " CR ;

: TEXT2 ." 0 " CR ;

\ Define the variable needed for the LED to save the status in

VARIABLE PW

\ Define the 2 words to switch the 1 bit in the variablke PW

\ to 1 (HIGH) and the word to set the variable to 0 (LOW)

: PWH 1 PW ! ; \ set the variable PW to 1 (HIGH)

: PWL 0 PW ! ; \ set the variable PW to 0 (LOW)

\ Define a word to display the contents of the variable as in TEXT2 and TEXT2

\ Define a word to display the variable:

: DISBIT PW @ . SPACE ;

\

: BITPW DISBIT ;

\ And now to send the text line TEXT1 and the 16 Variable values to the screen

: Display CR TEXT1 DISBIT ;

\ use a new word MS, which adds a delay before continuing.

\ The time as number before, e.g. 1000 MS as 1000 milliseconds.

: ONOFF PWH 1000 MS PWL ;

: Hello ." HELLO FORTH WORLD " ; \ just added, the usual first program …

The Forth Words used and a short explanation:

\ SPACE Print a SPACE to the screen

\ \ The divider – anything after the \ is ignored by the computer

\ . Print a value to the screen

\ ." xx " Print the ASCII string string xx to the screen, ended by “

\ : Start a new word definition; e.g. : Hello .” Hello “ ;

\ ; And finish the new word definition shown above with ;

\ CR Send a return to the display – one line down, cursor to the left

\ PAGE Delete all of the information on screen to have a clean screen

\ VARIABLE Define a new 16 Bit VARIABLE – only the lowest bit is used here

\ ! Store a value into a VARIABLE: XX PW !

\ @ Read the value back from a VARIABLE and print it: PW @ .

\ MS MS defines a delay and the number before MS sets the length: 100 MS

\ End of Part 1a: success to switch the LED On / Off, display the result

\ Part 2 to follow with more difficult constructs

End of Part 1a – more at http://preview.tinyurl.com/hfwf7y4 and http://preview.tinyurl.com/znwssvr

http://preview.tinyurl.com/hfwf7y4
http://preview.tinyurl.com/znwssvr

Imagine to Invent a Language Part 2 v12

In Part 1 we “invented” the basics of our language. Now in Part 2 it is getting more complex, and we have to set up a
system to ensure we can deal with all of the issues that might come up.

Rather than inventing something new, we look at examples that work. One is the office space we work in – or how
cars are manufactured using a conveyer belt. Such a process will require that we have to set up the sequence of
activities before we start to execute them. This will ensure as well, that all of the parts are prepared as a sequence
of events. Such a definition results as well in the fact, that no brackets and other constructs are used to make data
good to look, but not really ready to process using a conveyer belt.

Imagine: On the left we have the work coming in – like slices of work.

These “slices” coming in have either to be processed immediately or put somewhere for later work. A stack is a good
solution for this – like a stack of plates and new parts are added on top of what is there already.
And, as we had prepared the sequence of activity before starting already – they are put onto the stack in the correct
sequence as they will be needed later. This stack we call Data Stack, and of its importance The Stack. Sometimes we
might have to interrupt our normal sequence of activities, before we return to the sequence in progress – so
another stack, and we call it Return Stack.

We have to deal with the Variables as well that we had defined – and they look like Pidgeon Holes.

These Variables are like named memory addresses; but there are other memory areas we will have to deal with later
as another lot of Pidgeon holes.

After processing, relevant data has to be sent out – so as we had an INPUT STREAM – there is an OUTPUT STREAM.

And this “execution machine” that we have defined now, we will use all the time from now on.

 TOS ADD8

 2 ADD7

 3 ADD6

 4 ADD5

 5 V4 ADD4

 6 1 V3 ADD3

 7 2 V2 ADD2

 8 3 V1 ADD1

FORTH MACHINE: ITEMn ITEMn-1 ITEM2 ITEM1 - DSTACK - RSTACK - VARIABLES - MEMORY - OUTn OUTn-1 OUTn-2 OUT1

We actually have used exactly the same machine already in Part 1 – but without mentioning it.
And as things are getting more complicated, we need a way to see what is happening inside our execution machine.
A little Debugger will show some details: some Variables – a part of the Return Stack – a part of the Data Stack – or
more if we want later.

So let’s define what we want to display with our little Debugger and then define the words to achieve it:
: DebugDisplay .” V1_V2_V3_V4___R0_R1_R2___D0_D1_D2_D3_D4_D5_D6_D7 “

Like this we can see 4 Variables, the 3 levels of the return stack from the top, and the top 8 DSTACK values D0 to 7.

How to display the 4 Variables we know already: V1 @ . V2 @ . V3@ . V4 @ . and so a first word is

: vars PW @ . space T3 @ . space T2 @ . space T1 @ . space ;

With a bit of shuffling we can print the Return Stack information as well, but we need a few new words:
R> to move the data of the top item of the Return Stack to the Data Stack and then later to print.
>R will move the data on the top of the DSTACK to the Return Stack.

>R >R >R will transfer the 3 “plates” R2 R1 and R0 onto the Data Stack and print them out as R0, then R1 and R2

: RSTACK R> R> R> . space . space . space . ;

A bit of shuffeling as well to show the status of the DSTACK Plates: >R >R >R >R >R >R >R >R to get them to the
RSTACK. This transfers the plates over from the DStack to the RStack in the right sequence D7 D6 D5 D4 D3 D2 D1
D0, now on the RStack. This can be printed out now using 8 times the procedure to transfer the Rstack to the
DStack and print it out. Move from R to DStack, DUP, to duplicate the value, so one is printed, one is kept to rebuild
as it was before:

: DSTACKtoRSTACK >R >R >R >R >R >R >R >R ;

: DtRbackDUP1_4. R> DUP . space R> DUP . space R> DUP . space R> DUP . space ;

: DtRbackDUP5_8. R> DUP . space R> DUP . space R> DUP . space R> DUP . ;

: DSTACK DSTACKtoRSTACK DtRbackDUP1_4. DtRbackDUP5_8. ;

The three words combined in our Debugger would send the Forth Machine State information to the screen:
: ?? VARS RSTACK DSTACK ;

BUT: we are putting our hands basically into a running machine, so we have to be very careful, and only all of the
Debugger activities have to be as one word between : and ; . Here, no combined words as shown are allowed,
no <cr> to make it more easily readable.
Every time from now on, when we type ????? <cr> or use ????? in a program, the internal status will be printed out.
The complete code, including the the ones from Part 1:

\ INVENT A LANGUAGE, do a small application v10 ExMark Oct2016

\ INCLUDE C:\VFXTESTAPP\TESTAPPv10.f

\ Display these 2 lines

\ PW_T3_T2_T1 O3_O2_O1_O0 I3_I2_I1_I0 A3_A2_A1_A0 set XXh

\ 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 reset XXl

\ All of the Forth Words used and in the sequence used here:

\ SPACE \ . ." xx " : ; CR PAGE VARIABLE ! @

\ Define some text lines to display

: TEXT0 ." INVENT A LANGUAGE, do a samll application v1 ExMark Oct2016 " CR ;

: TEXT1 ." PW_T3_T2_T1 O3_O2_O1_O0 I3_I2_I1_I0 A3_A2_A1_A0 XXh / XXl " CR ;

\ Define the 16 variables - one per LED

VARIABLE PW VARIABLE T3 VARIABLE T2 VARIABLE T1

VARIABLE O3 VARIABLE O2 VARIABLE O1 VARIABLE O0

VARIABLE I3 VARIABLE I2 VARIABLE I1 VARIABLE I0

VARIABLE A3 VARIABLE A2 VARIABLE A1 VARIABLE A0

\ Define the 32 words to switch the 16 bits to High or Low

: PWH 1 PW ! ; : T3H 1 T3 ! ; : T2H 1 T2 ! ; : T1H 1 T1 ! ;

: PWL 0 PW ! ; : T3L 0 T3 ! ; : T2L 0 T2 ! ; : T1L 0 T1 ! ;

: O3H 1 O3 ! ; : O2H 1 O2 ! ; : O1H 1 O1 ! ; : O0H 1 O0 ! ;

: O3L 0 O3 ! ; : O2L 0 O2 ! ; : O1L 0 O1 ! ; : O0L 0 O0 ! ;

: I3H 1 I3 ! ; : I2H 1 I2 ! ; : I1H 1 I1 ! ; : I0H 1 I0 ! ;

: I3L 0 I3 ! ; : I2L 0 I2 ! ; : I1L 0 I1 ! ; : I0L 0 I0 ! ;

: A3H 1 A3 ! ; : A2H 1 A2 ! ; : A1H 1 A1 ! ; : A0H 1 A0 ! ;

: A3L 0 A3 ! ; : A2L 0 A2 ! ; : A1L 0 A1 ! ; : A0L 0 A0 ! ;

\ Define a word that displays the 16 variables as shown above

\ This needs the spaces for better readability

: 2SP Space Space ;

: Nibble1 PW @ . SPACE T3 @ . SPACE T2 @ . SPACE T1 @ . ;

: Nibble2 O3 @ . SPACE O2 @ . SPACE O1 @ . SPACE O0 @ . ;

: Nibble3 I3 @ . SPACE I2 @ . SPACE I1 @ . SPACE I0 @ . ;

: Nibble4 A3 @ . SPACE A2 @ . SPACE A1 @ . SPACE A0 @ . ;

\ And all 16 bits plus the Spaces in between

: 4NIBBLES Nibble1 2SP NIBBLE2 2SP NIBBLE3 2SP NIBBLE4 ;

\ And both lines now

: Display CR TEXT1 4NIBBLES ;

: Hello ." HELLO FORTH WORLD " ; \ added to show the usual first program

\ SPACE \ . ." xx " : ; CR PAGE VARIABLE ! @ >R R>

\ Part2 Define a Debugger, display the Forth Machine V1..V4, RS0..RS2, DS0..7

: v-r-d ." V1_V2_V3_V4 R0_R1_R2 D0_D1_D2_D3_D4_D5_D6_D7 " CR ;

: vars PW @ . space T3 @ . space T2 @ . space T1 @ . space space space ; \ display variables

: RSTACK R> R> R> . space . space . space space space ; \ display RSTACK

: DSTACKtoRSTACK >R >R >R >R >R >R >R >R ; \ move 8 top parts of DSTACK to RSTACK

: DtRbackDUP1_4. R> DUP . space R> DUP . space R> DUP . space R> DUP . space ; \ display 4

: DtRbackDUP5_8. R> DUP . space R> DUP . space R> DUP . space R> DUP . space ; \ display 4

: DSTACK DSTACKtoRSTACK DtRbackDUP1_4. DtRbackDUP5_8. ; \ combine the three

: ?? VARS RSTACK DSTACK ; \ combine Vars display, with RSTACK display, and DSTACK display

: RSTACKBASE 0 >R ; \ After start, insert a bottom marker 0 to show positions later

: RSTACK12 1 >R 2 >R ; \ After start, insert 2 more positions

: DSTACKBASE 0 ; \ After start, insert a bottom marker 0 onto DSTACK

: DSTACK17 1 2 3 4 5 6 7 ; \ After start, insert 7 numbers to show 7 additional positions

The final Debugger ????? needs all of these parts in one line between : and ; to work correctly

: ????? 3 spaces PW @ . T3 @ . T2 @ . T1 @ . 4 spaces R> R> R> DUP >R . Space DUP >R . space

DUP >R . 4 SPACES >R >R >R >R >R >R >R >R R> DUP . R> DUP . R> DUP . R> DUP . R> DUP . R> DUP .

R> DUP . R> DUP . ;

\ ????? can be used to check the status - as well in programs or to check how words behave

End of Part 2 – more at http://preview.tinyurl.com/hfwf7y4 and http://preview.tinyurl.com/znwssvr

http://preview.tinyurl.com/hfwf7y4
http://preview.tinyurl.com/znwssvr

