
Technical White Paper

Moving from C6805 to C6808
Byte Craft Limited

A2-490 Dutton Drive
Waterloo, Ontario
Canada N2L 6H7

Phone: 519 888 6911 • fax: 519 746 6751
Email: info@bytecraft.com • http://www.bytecraft.com

The information in this document is intended for use
with the Byte Craft Limited C6808 Code Development System.

Revision history:
Version Date Initials Description

0.1 14/11/06 KZ Initial version

Introduction
The Motorola/Freescale HC05 architecture has had a long life in embedded systems. However, the
HC08, HCS08, and new RS08 architectures have superceded HC05. Your upgraded design needs to
make use of one of these newer parts, and can take advantage of the enhanced instruction sets (in HC08
and HCS08) or the reduced size and cost (of RS08).

Developers porting programs generally see a simpler and more effective transition for C programs than
that needed for assembly programs. The compiler completely re-evaluates its programs at each
recompilation, taking advantage of every resource the target has to offer. Assembly programs written for
HC05 can be reassembled for all three current architectures, but with different concerns for each:

• HC08 and HCS08 are binary-compatible but not instruction-cycle compatible with HC05, and
legacy assembly programs won’t take advantage of the new processor features.

• RS08 is not binary-compatible, so programs will need some rework even with the pseudo-
instructions specified to implement HCS08-compatible behaviour.

Porting even a C program to a new target part requires rewriting source code: it’s just common sense.
On the other hand, our customers have cited various reasons why touching the source code of an existing
project is undesirable: regulations and certifications, license terms with clients or vendors, and budget
constraints are just a few. As much as possible, our suggestions will have no impact on your source code.

We’ve put together some C-specific tips on moving an embedded project from C6805 and HC05 to
C6808 and HC08/HCS08/RS08. This document complements Freescale’s application notes on moving
from HC05 to HC08; they are listed at the end.

Migrating to the new part

One last compile with C6805
Start with a known baseline: make sure you can compile old code with C6805 and get the executable
you expect. Use the listing file to identify the version of the compiler that generated the latest builds, and

Moving from C6805 to C6808 1/5

 Migrating to the new part
confirm the generated code. Different versions of the compiler can generate slightly different code as
new optimizations are introduced. Likewise, abandoned revisions to the project may have altered the
source code of a previously released design.

Ensure that all your libraries can be recompiled from source. Newer compilers cannot use object files or
libraries from previous versions.

Cycle counts: The cycle counts for instructions differ between HC05 and HC08/HCS08. For convenient
comparison between old and new generated code, enable the cycle count feature in C6805. Add the
directive

#pragma option k0;

to the source file and recompile with C6805. This will cause the compiler to insert a field in the listing
file that shows how many cycles each instruction takes. Rename the listing file to indicate it was
generated with C6805. Leave the directive in when compiling under C6808. Compare the new listing
file with the previous one when recalibrating loops or verifying other time-dependent behaviour.

Compare old and new peripherals
Get to know the differences between peripherals on the old and new parts. In a few cases, code for
peripheral access will compile without change. However, in most others some rewriting will be
necessary. We have seen port names change from one part to the next (with otherwise identical
peripherals), and bit flags and fields move around within I/O registers on different parts.

Resolving naming conflicts
In our device header files, we adhere very closely to Freescale documentation for each part. Identifiers
for I/O registers and their bits follow Freescale’s data sheets. On occasion, Freescale names two I/O
ports or bit fields the same. In this case, we must rename symbols to avoid duplicate declarations. Such
changes are noted in the header file comments.

When you redesign a program for a new part, the device header files may declare identifiers that conflict
with those in your existing code. For instance:

/* In new device header file */
#pragma portrw FLCR @ 0xFE08; /* Flash control register */

/* In existing software */
//FLCR: Fine level control read command
#define FLCR 0xAA

/* … */

PORTA = FLCR;

The compiler will issue the error “Inconsistent duplicate macro definition” when compiling this example.

It’s possible to change the device header file to resolve the conflict, but this will require you to repeat
the same change with each new Code Development System upgrade. In some environments this will
lead to problems with other projects. It’s best to put a shim in the source code to re-declare the
conflicting new peripherals for the current project only.

Add a re-declaration block similar to this:

Moving from C6805 to C6808 2/5

 Step-by-step guide
/* In new device header file */
#pragma portrw FLCR @ 0xFE08; /* Flash control register */

/* Redefinition block */
#pragma portrw NEWFLCR @ & FLCR;
#undef FLCR

/* In existing software */
//FLCR: Fine level control read command
#define FLCR 0xAA

/* … */

PORTA = FLCR;

You can now use the existing source, and the new peripheral, without substantial revisions. Place the re-
declaration block in a header file if you anticipate using BClink: the new declarations must accompany
the device header file that BClink needs to read as part of the linker command file.

Watch out for different optimizations
The move from C6805 to C6808 will introduce new optimizations into generated code that may conflict
with your original intentions for the program. If you have used any of the following, check the generated
code extra carefully:

• Pointers and arrays. Compilers can optimize pointers and indexes to overcome hardware
limitations. Bank switching on RS08 is a particular concern because it didn’t exist before in ’08
parts. Watch out for indirect accesses in your code that won’t generate the expected effective
address.

• Self-modifying code. It is tempting to trust that self-modifying code will work as expected
because the HC(S)08 is binary compatible with the HC05. However, new optimizations used by
the new compiler may change the code generated for (among other things) flow control. The
compiler will replace subroutine calls with jumps or branches where possible to save program
memory and stack space. Don’t assume that your code’s RTS will break the return stack, however.

The compiler makes use of the H register in HC(S)08 in long operations. Your interrupt service routines
may need to preserve its state if they perform long operations themselves. Use the PSHH(); and PULH();
intrinsics to do so.

Step-by-step guide
This is a list of steps to take to recompile an HC05
program for a HC08, HCS08, or RS08 part.

At each step, recompile to check if the next step is
necessary.

1. Change the device header file #include in your
main program to use the HC(S)08/RS08 header
for the new target part.

If you’re using BClink, make the change in every
source file/library file, and in the settings for
BClink. Choose Project|Properties, select the Let BClink know about the new device header file.

Moving from C6805 to C6808 3/5

 For future reference
Linker tab, and add the file in the Include Files list.

2. Look in your program for symbols duplicated in the device header file. Use new declarations to
capture their addresses and then #undef them.

If you’re using BClink, ensure these declarations are available to the linker, probably through a
header file #included after the device header.

3. Check for global symbols unexpectedly hidden by local ones within C functions. If you’ve
declared an identifier within a function written for HC05, one that also appears as a global in an
HC(S)08/RS08 device header file, the global definition will be hidden in that function.

4. Check the code written for each peripheral against the data sheet. Mask option registers, system
integration modules, timers, and COP timers will show the greatest changes between generations
of parts.

5. Migrate configuration options from the old part to the new part. Configuration options from the
original program probably used the #pragma mor or #pragma mori directives. These directives are
still available, but deprecated. Instead, use these more general directives:

a. For configuration registers in Flash (with no RAM components), use #pragma fill:
#pragma fill @ CONFIG_x = <configuration value>;

b. For configuration registers in RAM, simply assign a value, either in the user-supplied
function __STARTUP() or very early in main():

void __STARTUP(void)
{
 CONFIG_x = <configuration_value>;
}

For future reference
If you’ve retargeted an HC05 design to HC(S)08/RS08, the same thing may happen again in the future
with another new architecture. Here are some hints on how to simplify the next transition.

• If you have any left-over Flash, embed the time of compilation in the executable itself with the
__TIME__ and/or __DATE__ macros:
#pragma memory ORG @ <somewhere out of the way>;
const char * __product_compiled = __TIME__;

Do this early in the development process: backups will indicate to future developers that the date
or time will probably appear in the final executable, and the rough location. They can then match
the information in the executable against the timestamp on files recovered from archives. If the
two are very different, more research will be required to recover the correct files.

Moving from C6805 to C6808 4/5

 References

Moving from C6805 to C6808 5/5

• Use device-independent I/O methods. We have in the past generated I/O libraries that abstract
input and output functions away from specific bit values. Consider the specific instance of data
direction for bidirectional I/O ports:
/* Macros for use in DDR() and DDR_MASKED() assignments */
#define OOOOOOOO 0b11111111
#define OOOOOOOI 0b11111110
#define OOOOOOIO 0b11111101
#define OOOOOOII 0b11111100
//and so on

/* Mask macros for use in DDR_MASKED() assignments */
#define ________ 0b00000000
#define _______C 0b00000001
#define ______C_ 0b00000010
#define ______CC 0b00000011
//and so on

/* Macros for adjusting the data direction */
#define DDR(PORT,VAL) \
 if(&PORT==&PORTA) DDRA=VAL; \
 else if(&PORT==&PORTB) DDRB=VAL

#define DDR_MASKED(PORT,MASK,VAL) \
 if(&PORT==&PORTA) DDRA=((DDRA&~MASK)|(VAL&MASK)); \
 else if(&PORT==&PORTB) DDRB=((DDRB&~MASK)|(VAL&MASK))

If the underlying hardware changes, both the DDR() macros and the I/O definitions can be
changed to leave the source code intact.

References

Freescale Application Notes
AN1218/D: HC05 to HC08 Optimization.

AN2717: M68HC08 to HCS08 Transition. A good look at the way peripherals can change between
devices.

	Introduction
	Migrating to the new part
	One last compile with C6805
	Compare old and new peripherals
	Resolving naming conflicts

	Watch out for different optimizations

	Step-by-step guide
	For future reference
	References
	Freescale Application Notes

