

Linguistic Variables:

Clear Thinking with Fuzzy Logic

Walter Banks
Byte Craft Limited

A2-490 Dutton Drive
Waterloo, Ontario • N2L 6H7

Voice: (519) 888 6911
Fax: (519) 746 6751

Email: walter@bytecraft.com

Abstract:

Linguistic variables represent crisp information in a form and precision appropriate for
the problem. For example, to answer the question "What is it like outside?", one might
observe "It is warm outside." Experience has shown that if it is “warm” and the time is
mid-day, a jacket is unnecessary, but if it is warm and early evening, it would be wise to
take a jacket along (the day will change from warm to cool). The linguistic variables like
“warm”, so common in everyday speech, convey information about our environment or
an object under observation.

We will show how linguistic variables can be defined and used in a variety of common
applications, including home environment control, product pricing, and process control.
The use of linguistic variables in many applications reduces the overall computation
complexity of the application. Linguistic variables have been shown to be particularly
useful in complex non-linear applications.

Linguistic variables are central to fuzzy logic manipulations, but are often ignored in the
debates on the merits of fuzzy logic.

Linguistic Variables: Clear Thinking with Fuzzy Logic

Linguistic Variables

What is a linguistic variable? Linguistic variables are used every day to express what is
important and its context. ‘This room is hot” is specific: it represents an opinion
independent of measuring system, and it has information that most listeners will
understand. Linguistic variables are used in ordinary daily activities, including
preparation instructions for instant soup mixtures. These instructions are filled with
linguistic references. Bring to a boil, stirring constantly, reduce heat, partially cover,
simmer, stirring occasionally are all linguistic variables within the context of soup
preparation. The manufacturers of instant soup apparently believe these seemingly vague
instructions clearly tell the consumer how to make their product successfully.

The following examples show some of the ways linguistic variables can be formally
defined and used in application software.

Directions:

1. Empty contents into saucepan;

add 4½ cups (1 L) cold water.

2. Bring to a boil, stir
ring constantly.

3. Reduce heat; partially cover

and simmer for 15 minutes,

stirring occasionally.

4 to 6 servings, 4½ cups (1 L)

Soup Mix

Linguistic
Variables

Figure 1: Preparation instructions for Minestrone Soup Mix

2

 Linguistic Variables

Directions:
1. Empty contents into saucepan; add 4½ cups (1 L) cold water.
2. Bring to a boil, stirring constantly.
3. Reduce heat; partially cover and simmer for 15 minutes, stirring occasionally.
4 to 6 servings, 4½ cups (1 L)

Example 1: Linguistic variables in soup instructions

An old friend comes into your shop asking to buy a few widgets, and wants your best
price. The onus is on you to come up with a price given many parameters. Taking this
hypothetical case we need to account for:

• Cost of the widgets

• Normal markup

• Shelf time of the product

• Shelf life of the product

• Length of the relationship

• Customer payment history

• Quantity of the sale

• Repeat business potential

Computerized record keeping will provide hard (crisp) numbers for many of the
parameters. This still leaves the need to combine the numbers in some way to compute a
discount from the normal list price, to quote to the customer.

The first surprise is that of all the parameters in the sale, all but “repeat business
potential”, are crisp numbers they can be precisely defined with information from a well-
organized database. How should each of these parameters affect the final quotation
discount?

 3

Linguistic Variables: Clear Thinking with Fuzzy Logic

Sale Parameter What is important Why it’s important
Crisp measurement
Shelf_time Long, Short Cost of keeping a product

in inventory
Shelf_life Short, Long, Forever When shelf life is reached

the product loses value
Payment Prompt, Normal,

Eventually, Nagging
Payment history is part of
cost of doing business
with him.

Quantity Small, Normal, Large,
Huge

There are shop savings
and increased profit to
selling larger quantities

Customer New, Recent, LongTerm Looks at potential that a
new customer might get
special treatment just as
long term customers are
rewarded for loyalty

Vague, subjective measurement

Repeat business
potential

Yes, Maybe, No Both product and
customer dependent.

Table 1: Parameters to consider pricing a widget

Table 1 identifies what is important in the decision making process. Each of the
important items is context dependent. We can say “if the quantity is huge then profit is
higher”. huge is meaningful in the context of quantity, and higher is a consequence of
profit. This is an example of a rule: an entire set of rules as follows will define the logic
behind establishing a discounted price for the potential customer.

IF shelf_time IS long THEN discount IS large
IF shelf_time IS short THEN discount IS low
IF shelf_life IS short THEN discount IS high
IF shelf_life IS Long THEN discount IS normal
IF quantity IS small THEN discount IS none
IF quantity IS large THEN discount IS large
IF quantity IS huge THEN discount IS high
IF Customer IS new THEN discount IS special
IF customer IS recent THEN discount IS normal
IF customer IS longterm THEN discount IS large
IF shelf_life IS short AND
 shelf_time IS long THEN discount IS deep

This group of eleven rules (and perhaps a half-dozen more) can be used to establish
computable pricing for many different products. This collection of rules individually
describes the relationship between the sale parameters and the discount offered. These
rules, when they are all evaluated, will provide a weighted value for the discount.

4

 Using Linguistic Variables

Appendix A has a copy of the pricing rules, as Fuzz-C™ source. The source
(pricing.fuz), and its translation into standard C, are part of the code distributed
with this paper. Fuzz-C™ is a preprocessor that effectively adds linguistic variable
support to most C compilers. Fuzz-C translates linguistic variable declarations,
consequence and fuzzy functions into standard C. You can write fuzzy logic directly into
a C application program.

There is a book on the Byte Craft Limited website that has examples and an overview of
the implementation details of linguistic variables in C.
(http://www.bytecraft.com/fuzzybookform.html).

Using Linguistic Variables
IF room IS cold THEN heat IS on;
IF room IS hot THEN heat IS off;

Simple thermostats have been doing this for a hundred years or more. Why would we
need linguistic variables and fuzzy logic to operate a simple switch? How do we evaluate
a crisp temperature under such vague terms as hot and cold? What are hot and cold
anyway?

The heating control problem sounds quite simple: we measure a temperature for the
room, and use two fuzzy logic rules to control a furnace switch (heat). When the
meanings of cold and hot are not precise opposites, the outcome becomes more complex
and useful.

Linguistic variables associate a linguistic condition with a crisp variable. A crisp variable
is the kind of variable that is used in most computer programs: an absolute value. A
linguistic variable, on the other hand, has a proportional nature: in all of the software
implementations of linguistic variables, they are represented by fractional values in the
range of 0 to 1.

In the above example, room and heat are crisp variables, and hot, cold, on and off are
linguistic variables. The linguistic variables on and off in the above example are
represented in the crisp variable heat as a 1 and a 0 respectively. The hot and cold
linguistic variables represent a range of values corresponding to the crisp variable room.
This relationship can be represented as shown in the following graph.

 5

Linguistic Variables: Clear Thinking with Fuzzy Logic

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

Temperature

60

80

100

100
Linguistic Variable HOT

Figure 2: Linguistic variable HOT

Most linguistic variables can be represented in software with co-ordinates of 4 points. A
crisp variable room is associated with a linguistic variable hot, defined using four break
points from the graph.

LINGUISTIC room TYPE unsigned int MIN 0 MAX 100
 {
 MEMBER HOT { 60, 80, 100, 100 }
 }

A lot of literature has been written on representation of linguistic variables, but
implementations for most applications utilize four points as above. There are arguments
for smooth curves to represent linguistic variables for accuracy, and against smooth
curves because of computational intensity. The worst-case error in 4-point presentation is
in the corners. The robust nature of fuzzy logic rules in applications compensates for the
simplistic representation of linguistic variables.

The Anatomy of a Fuzzy Rule
IF room IS cold THEN heat IS on;

Each fuzzy rule consists of two parts: a predicate and consequence part. The predicate
determines the rule weight or truth. The result of the room IS cold is a Degree of
Membership (DOM) value between the values of fuzzy zero and fuzzy one.

The DOM of the predicate weighs upon the consequence part of a fuzzy rule. In plain
language, the urgency to turn the heat on with the above rule is determined by how cold
the room is. A single fuzzy rule offers nothing over a crisp comparison and action;
multiple competing rules do, however.

6

 Logically combining Linguistic variables

 IF room IS cold THEN heat IS on;
 IF outside_temperature IS hot THEN heat IS off;
 IF day IS morning THEN heat IS off;
 IF day IS afternnon OR day IS evening THEN heat IS on;
 IF room IS hot THEN heat IS off;

Multiple independent rules are evaluated in parallel. Each rule contributes in a control
system that smoothly goes from one dominant rule to the next.

All fuzzy rule calculations are done between fuzzy zero and fuzzy one. If more resolution
is needed to make sure the calculations are accurate, the range remains constant and the
number of bits in the DOM are increased. This effectively normalizes the problem space
to the resolution of the DOM. As applications are developed, the resolution of the DOM
is essentially determined by the resolution needed by the Consequence functions.

Logically combining Linguistic variables

Just as Boolean expressions can be combined to yield a Boolean result that represents the
combined result of the expressions, so can linguistic variables. Linguistic variables can
be combined with or, and and not operators. The following C defines can be used in
application code

#define F_OR(a,b) ((a) > (b) ? (a) : (b))
#define F_AND(a,b) ((a) < (b) ? (a) : (b))
#define F_NOT(a) (F_ONE+F_ZERO-a)

Fuzzy or is the largest DOM of its arguments. Fuzzy and is the smallest of its arguments.
Fuzzy not is the space between the argument and fuzzy 1. If the resolution of linguistic
variables is reduced to have only the values of 0 and 1, the logical definitions for
manipulating linguistic variables are the same as conventional Boolean logic.

F_OR operator

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
0 10 20 30 40 50 60 70 80 90 100

(Crisp)

A B

F_OR (A,B)

Figure 3: F_OR operator (Fuzzy OR)

 7

Linguistic Variables: Clear Thinking with Fuzzy Logic

PID Controller

The classical PID controller creates a manipulated variable signal as the sum of three
terms: the first is the absolute error multiplied by a constant; the second is the rate of
change of error multiplied by a second constant; the third is the accumulated error
multiplied by a constant.

mv = (pe × K1) + d pe
d t

× K2 + (Σ pe × K3)

Figure 4: General equation for PID control system

Each of the three parts of the PID control system is (loosely) intended to: correct for
errors; anticipate potential error conditions; overcome small accumulated errors (sticky
bits). This layman’s description comes close to what is needed to implement a PID
controller using linguistic variables.

The approach we’ve taken to implement a linguistic variable-based PID controller uses
three different control strategies keyed to the size of system error. If the error is large
then the manipulated variable is driven primarily by the error value alone. Smaller errors
are dominated by rate-of-error change rules. Finally, with very small errors, control is
dominated by the integration of the error.

Linguistic variables can create a control system that is more tolerant of changes in system
constants. Most real-world control applications are nonlinear. Some examples include
airplane control systems, motor controllers, food and chemical processing; all these have
system parameters of which vary widely in normal use.

Linguistic Time of Day

Many applications can refer to the time of day in linguistic terms. Implementation details
for an example are shown in Appendix C. This example comes from a home environment
application that divided the day into 0.1-hour segments, conveniently storing the crisp
time of day into one byte. The following definitions show some creative usage of the
definition of linguistic variables.

The crisp hours is a wrap-around number system that resets at midnight. The linguistic

8

 Linguistic comparisons

variable day is conventional: it starts being “day” at 5:30 am and is truly “day” at 6:30
am; “day” continues to 5:30pm, where it declines until 6:30pm (this is a four point graph
described above). The linguistic variable night avoids this complication by being
defined, as a fuzzy function hours IS NOT day. Just as we do in our daily lives, we can
define a new linguistic variable in terms of other defined linguistic variables. The night
setback time (nightsb) is night but not evening.

// hours 0.1 resolution hour 0 .. 240 for a day
 LINGUISTIC hours TYPE char MIN 0 MAX 240
 {
 MEMBER day { 55 , 65 , 175 , 185 }
 MEMBER night {FUZZY { hours IS NOT day }}
 MEMBER morning {50, 60 , 80 , 90 }
 MEMBER evening { 160 ,170 ,190 , 200 }
 MEMBER nightsb {FUZZY { hours IS night AND hours IS NOT evening }}
 }

Example 2: Environment control linguistic variable

Linguistic comparisons

Many crisp comparisons are not intended to match precisely a single value: fuzzy
comparisons are available to solve the dilemma. We might want to say that someone is
about 45. This means that 44 and 46 are significant and perhaps 40 and 50 are limits that
are not relevant.

The crisp equality comparison is replaced with a fuzzy comparison that accounts for a
range of data. We base a comparison on three data values: the comparison point, range
until the comparison has failed (delta), and the current variable value. Delta is the
distance to a value where the current comparison ceases to be important. Consider for a
moment the following definitions; in each case the delta value returns a fuzzy zero or
fuzzy one and any further deviation from the center point will not change the result. The
following definition of Fuzzy equal shows a definition that is easily implemented.

 9

Linguistic Variables: Clear Thinking with Fuzzy Logic

F_EQ operator

D
eg

re
e

of
 M

em
be

rs
hi

p

1

0
-delta CP +delta

v (Crisp)

Figure 5: F_EQ (Fuzzy equal)

The arguments for F_EQ are: v for the crisp variable under test, cp for the center point,
and delta which is the significant distance from the center point in the fuzzy
comparisons. The F_EQ function can be used in any expression that accepts linguistic
variables.

DOMtype F_EQ(v,cp,delta)
 {
 long m = ABS(cp-v);
 if (m > delta) return(F_ZERO);
 return((m/delta) *
 (F_ONE-F_ZERO));
 }

In essence, cp and delta help declare an anonymous linguistic variable. This technique
can be extended to all of the normal arithmetic comparisons.

Summary

Linguistic variables provide a normalized number system whose resolution is dependent
on the consequence requirements of the application. Linguistic variables provide a
natural smooth transition between competing rules describing different strategies.
Linguistic rules focus on problem solution, not problem analysis.

The implementation of linguistic variables and their use work well on conventional
embedded microprocessors, and are generally not as computationally intensive as
alternative application implementations. The reduction of computation requirements is
almost entirely due to the normalization of the data of interest to the application.
Linguistic variables can easily be combined with conventional application software.

10

 Summary

Linguistic variable types are taking their place alongside such other data types as
character, string, real and float. They are an extension to the already familiar enumerated
data types common in many high-level languages. The linguistic domain is simply
another tool that application developers have at their disposal to communicate clearly.
When applied appropriately, linguistic variable-based solutions are competitive with
conventional algorithmic solutions, with considerably less implementation effort.

 11

Linguistic Variables: Clear Thinking with Fuzzy Logic

References:

An internet search will reveal a huge amount of fuzzy logic material. The following are a
few references that you might find useful.

http://www.bytecraft.com/fuzzylogictools.html is our resources page for fuzzy logic.

http://www.bytecraft.com/fuzzybookform.html offers an online PDF file of a fuzzy logic
book mentioned earlier. It is a collection of papers by Gordon Hayward and Walter
Banks. It shows implementation details and examples of fuzzy logic using Fuzz-C™.

Earl Cox has written a number of good books on fuzzy logic, with many good
implementation examples. “The Fuzzy Systems Handbook”, originally published in the
mid 1990s, is a very good read; it provides C++ source code for the examples and tools.
Much of Dr. Cox’s work has been looking for patterns in databases.

12

 Appendix A

Appendix A

The pricing.fuz example.

 LINGUISTIC Shelf_time TYPE int MIN 0 MAX 1500
 {
 MEMBER long { 60, 100, 1500, 1500 }
 MEMBER short { 0, 0, 40, 60 }
 }

 LINGUISTIC Shelf_life TYPE int MIN 0 MAX 1500
 {
 MEMBER Short { 0, 0, 30, 60 }
 MEMBER Long { 30,60, 300, 360 }
 MEMBER Forever { 0, 0,1500,1500 }
 }

 LINGUISTIC Payment TYPE int MIN 0 MAX 300
 {
 MEMBER Prompt { 0, 0, 30, 45 }
 MEMBER Normal { 30, 45, 60, 75 }
 MEMBER Eventually { 60, 80, 180, 300 }
 MEMBER Nagging { 75, 120, 300, 300 }
 }

 LINGUISTIC Quantity TYPE int MIN 0 MAX 500
 {
 MEMBER Small { 1, 3, 3, 5 }
 MEMBER Normal { 2, 5, 7, 10 }
 MEMBER Large { 7,10, 25, 30 }
 MEMBER huge { 25,50,500,500 }
 }

 LINGUISTIC Customer TYPE int MIN 0 MAX 150
 {
 MEMBER New { 1, 1, 2, 2 }
 MEMBER Recent { 2, 5, 10, 20 }
 MEMBER LongTerm { 5,10,150,150 }
 }

 CONSEQUENCE discount TYPE float DEFUZZ cg
 {
 MEMBER deep { 120 }
 MEMBER large { 65 }
 MEMBER high { 50 }
 MEMBER special { 35 }
 MEMBER normal { 20 }
 MEMBER low { 5 }
 MEMBER none { 0 }
 }

 13

Linguistic Variables: Clear Thinking with Fuzzy Logic

 FUZZY CalculateDiscount
 {
 IF shelf_time IS long THEN discount IS large
 IF shelf_time IS short THEN discount IS low
 IF shelf_life IS short THEN discount IS high
 IF shelf_life IS Long THEN discount IS normal
 IF quantity IS small THEN discount IS none
 IF quantity IS large THEN discount IS large
 IF quantity IS huge THEN discount IS high
 IF Customer IS new THEN discount IS special
 IF customer IS recent THEN discount IS normal
 IF customer IS longterm THEN discount IS large
 IF shelf_life IS short AND
 shelf_time IS long THEN discount IS deep
 }

void main (void)
 {
 // . . . Application code to get crisp numbers for
 // Cost Markup Shelf_time Shelf_life Payment
 // Quantity Customer

 CalculateDiscount ();
 Quote = (cost + (cost * markup)) * (1.0 –
 (discount / 100.0));
 }

14

 Appendix B

Appendix B

PID control system implemented with lingustic variables.

 int OldError,SumError;
 int process(void);

 LINGUISTIC Error TYPE int MIN -90 MAX 90
 {
 MEMBER LNegative { -90, -90, -20, 0 }
 MEMBER normal { -20, 0, 20 }
 MEMBER close { -3, 0, 3 }
 MEMBER LPositive { 0, 20, 90, 90 }
 }
 LINGUISTIC DeltaError TYPE int MIN -90 MAX 90
 {
 MEMBER Negative { -90, -90, -10, 0 }
 MEMBER Positive { 0, 10, 90, 90 }
 }
 LINGUISTIC SumError TYPE int MIN -90 MAX 90
 {
 MEMBER LNeg { -90, -90, -5, 0 }
 MEMBER LPos { 0, 5, 90, 90 }
 }

 CONSEQUENCE ManVar TYPE int MIN -20 MAX 20 DEFUZZ cg
 {
 MEMBER LNegative { -18 }
 MEMBER SNegative { -6 }
 MEMBER SPositive { 6 }
 MEMBER LPositive { 18 }
 }

 FUZZY pid
 {
 IF Error IS LNegative THEN ManVar IS LPositive
 IF Error IS LPositive THEN ManVar IS LNegative
 IF Error IS normal AND DeltaError IS Positive
 THEN ManVar IS SNegative
 IF Error IS normal AND DeltaError IS Negative
 THEN ManVar IS SPositive
 IF Error IS close AND SumError IS LPos
 THEN ManVar IS SNegative
 IF Error IS close AND SumError IS LNeg
 THEN ManVar IS SPositive
 }

 15

Linguistic Variables: Clear Thinking with Fuzzy Logic

 void main (void)
 { while(1)
 {
 OldError = Error;
 Error = Setpoint - Process();
 DeltaError = Error - OldError;
 SumError = SumError + Error;
 pid();
 }

 }

16

 Appendix C

Appendix C

Lingustic variables for time of day.

#define fifty // powerline frequency
#ifdef fifty
#define rollover 100
#else
#define rollover 120
#endif

char ticks; // 1/60 sec tics roll over at 120
 // 1/50 sec tics roll over at 100
char seconds; // actually two seconds 180 = 6 min

// hours; .1 resolution hour 0 .. 240 for a day
 LINGUISTIC hours TYPE char MIN 0 MAX 240
 {
 MEMBER day { 55 , 65 , 175 , 185 }
 MEMBER night {FUZZY { hours IS NOT day }}
 MEMBER morning {50, 60 , 80 , 90 }
 MEMBER evening { 160 ,170 ,190 , 200 }
 MEMBER nightsb {FUZZY { hours IS night AND hours IS NOT
 evening }}
 }

void time (void)
/* called each 1/60 of a second */
 {
 if (++ticks >= rollover)
 {
 ticks = 0;
 if (++seconds >= 180)
 {
 seconds = 0;
 if (++hours >= 240)
 { // new day
 hours = 0;
 }
 }
 }

 17

ox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Walter Banks
Byte Craft Limited
A2-490 Dutton Drive

Waterloo, Ontario • N2L 6H7

Voice: 1 (519) 888 6911
Email: walter@bytecraft.com

Walter Banks is the president of Byte Craft Limited, a company specializing in software
development tools for embedded microprocessors. His interests include highly reliable
system design, code generation technology, and programming language development and
standards. Walter Banks is a member of the Canadian delegation to ISO WG-14, where
he co-authored WDTR 18037 (a technical report on C language extensions to support
embedded processors). He has co-authored one book, and numerous journal and
conference papers.

Byte Craft Limited is a software development company specializing in embedded
systems software development tools for single-chip microcomputers. We provide
innovative solutions for developers, consultants and manufacturers around the world. Our
main products are C cross-compilers targeted to a variety of microcontroller families.

Edited by Kirk Zurell.

	Abstract:
	Linguistic Variables
	Using Linguistic Variables
	The Anatomy of a Fuzzy Rule
	Logically combining Linguistic variables
	PID Controller
	Linguistic Time of Day
	
	
	
	Many applications can refer to the time of day in linguistic terms. Implementation details for an example are shown in Appendix C. This example comes from a home environment application that divided the day into 0.1-hour segments, conveniently storing th

	Linguistic comparisons
	Summary
	References:
	Appendix A
	Appendix B
	Appendix C

