
Proof that C can match
 or beat assembly

Byte Craft Limited

© 2006 Byte Craft Limited. All rights reserved.

Introduction
We’ve often boasted that C can equal, and usually beat, macro-assembly language programming. When
assembly programmers can convince themselves to let the compiler do the work, a C compiler can
match or beat their best assembly efforts. After all, what is a compiler but the distilled wisdom of years
of programming experience?

Now we have some concrete proof to show this. This document demonstrates a way to prove that a
compiler can match handwritten assembly, and even beat it without trying.

In the process of verifying our latest product, C6808 with support for Freescale’s RS08 core, we went
through an exercise that tests our compiler’s ability to match assembly. The exercise is simple: we wrote
C code that implemented the semantics of every assembly instruction exactly, and then we compiled the
program. For each C operation, we expected to see its equivalent machine language code, but the results
showed us something more.

The process
Creating the test is simple:

1. Declare a few choice C variables. There’s more on this
below, but the key is to have one or two variables from
each memory space within the microcontroller.

2. Look at the algebraic description of the operation of each
instruction, and simply perform that operation in C.
Compose short C statements that implement each
assembly instruction. Do the same for each addressing
mode.

3. For each instruction, where the instruction description
changes the program counter, use goto. Where the instruction changes the accumulator, assign a
new value to reg_ac or another variable declared as #pragma rega.

Byte Craft Limited

A2-490 Dutton Drive
Waterloo, Ontario
Canada N2L 6H7
Phone: 519 888 6911
Fax: 519 746 6751
Email: info@bytecraft.com
http://www.bytecraft.com

 1/3

mailto:info@bytecraft.com
http://www.bytecraft.com/

Byte Craft Limited

4. Compile the resulting source file and look at the generated code in the listing file. For each C
translation, the correct opcode should appear.

Here’s an example:
0100 4C INCA AC++;
0101 2F INC X X++;
0102 26 INC $06 tiny++;
0103 3C 15 INC $15 small++;
0105 3C 34 INC $34 page0++;

0107 4A DECA AC--;
0108 5F DEC X X--;
0109 56 DEC $06 tiny--;
010A 3A 15 DEC $15 small--;
010C 3A 34 DEC $34 page0--;

A cursory check of the code shows the compiler is matching C correctly. Here’s a little more involved
test:
0160 3B 34 9D DBNZ $34,$0100 if (--page0 !=0) goto rel; // DBNZ page0,rel
0163 3B 34 01 DBNZ $34,$0167 if (--page0 == 0) NOP();
0166 AC NOP
0167 31 34 96 CBEQ $34,$0100 if (AC == page0) goto rel; // CBEQ page0,rel
016A 31 34 01 CBEQ $34,$016E if (AC != page0) NOP();
016D AC NOP

The C implements two common uses of DBNZ and CBEQ, and the compiler optimizes accordingly,
jumping directly to a target or simply skipping an implied branch.

An entire compiled file of these tests runs about 400 bytes, for a regular instruction set with 1 byte
opcodes, and with 1, 2, and (rarely) 3 byte instructions.

The variables are declared in locations that correspond to the different address modes. AC and X are
declared as registera and registerx, built-in types that correspond to the accumulator and 0x0F (the
index register), respectively. Other variables are declared in named address spaces specified in the
device header file, or simply assigned to known locations using the @ notation:
char small @ 0x15;

The Results
We can see the compiler’s intelligence appear when it chooses the right instructions, of course. For
instance, at the beginning of the test suite, the compiler loads PAGE once for several extended address
instructions. Unless the test uses variables outside the 0x200 64-byte extended page (PAGE == 0x08), this
only needs to happen once.

But we can also see the compiler shine when it chooses unintuitive instructions that, on later analysis,
are completely correct. Here’s an example:
010E B0 34 SUB $34 AC = AC - page0;
0110 B1 34 CMP $34 AC - page0;
0112 B1 34 CMP $34 (void)AC - page0;

These three C statements were intended to test the SUB instruction. In the second and third cases, the
compiler has caught a subtle distinction. When the result of an expression is to be discarded (implicitly
or explicitly), the registers involved must not be mutated (AC doesn’t change value, after all). The
compiler chooses an optimization to determine the implied result, and the compiler can avoid reloading
AC.

2/3

 Proof that C can match or beat Assembly

 3/3

Frequently-Asked Questions

But doesn’t this prove C is no more than elaborate assembly?
The first aim of this exercise is to match assembly, a kind of identity transformation. To do that, we
followed the assembly pretty closely in C. True, we did use some specially-located variables that you
might not otherwise use on a regular basis.

But this exercise does go beyond simple freeform assembly. It invokes some optimizations regarding
simplification of operations, as seen above. It demonstrates that all optimizations are always considered,
something that a human assembly programmer can find difficult to do.

What doesn’t this example test?
This exercise doesn’t test optimizations related to higher math functions or program flow (dead code
removal and so on).

Also, it doesn’t invoke higher memory allocation functions. You can move declarations for LOCAL
memory, for instance, between different areas within RS08’s RAM. If you’ll be using lots of local
variables and using them intensively, consider moving LOCAL to the Tiny address space:
#pragma memory LOCAL [14] @ 0x0000;
The frequent accesses to function-local variables will enjoy reduced code size.

Why do you declare variables where no RAM exists?
Some of the variables are declared in the frequently-used registers area (0x10-0x1F). This tests the Small
addressing mode selection, whether addressing a byte of RAM or a register. To the compiler, the
accesses are much the same. The only difference is that port registers are deemed volatile.

Conclusions
Compilers are very complex software systems. This means that, within their rules, they can sometimes
offer results we didn’t think to expect. We were surprised to see the optimizer use strategies we knew
were possible but that were in fact novel combinations in the compiler’s repertoire.

Ultimately, this test was a shakedown run for the compiler: once around the instruction set, with a
detailed inspection afterward. Since we can match each basic assembly operation in C, compiler
performance will only improve from that baseline.

Document Revision history:
Version Date Initials Description

1 9 June 2006 KZ Initial version.

1.1 26 June 2006 KZ Revision.

1.2 10 July 2006 KZ Revision; public release.

1.3 4 October 2006 KZ Formatting, corrections.

	Introduction
	The process
	The Results
	Frequently-Asked Questions
	But doesn’t this prove C is no more than elaborat
	What doesn’t this example test?
	Why do you declare variables where no RAM exists?

	Conclusions

