X\
percepio Fracies

SENSING SOFTWARE

We collected examples of how Tracealyzer has been of useful to our customers and have recreated similar
issues to illustrate the benefits of our Tracealyzer tools for embedded software developers.

In this case, a customer had an issue with a randomly occurring reset. By placing a breakpoint in the reset
exception handler, they figured out that it was the watchdog timer that had expired. The watchdog timer was
supposed to be reset in a high priority task that executed periodically.

The ability to insert custom User Events comes in handy in this case. They are similar to a classic “printf()” call
and events have here been added when the watchdog timer was reset and when it expired. User events also
support data arguments, and this has been used to log the timer value (just before resetting it) to see the
watchdog “margin”, i.e., remaining time. The result can be seen below, in the yellow text labels.

SamplerTask | 3 B

[l ControlTask

npey

B ServerTask
SamplerTask |

® WatchdogISR g
(B serverTask

. ';'_I{ [Error messages] Watchdog reseti |
|

We can see that the SamplerTask is running, but it does not clear the watchdog timer in the last execution of
the task, which resets the system after a while (“Watchdog reset!”). So why didn’t SamplerTask reset the
watchdog timer? Let’s enable Kernel Service calls to see what the task was doing.

"~ xQueueSend(ControlQueus) tocks

[serverTask

SamplerTask
1

[® watchdogisR
(W serverTask

X\
percepio Flasays

SENSING SOFTWARE

The last event of SamplerTask is a call to xQueueSend, a kernel function that puts a message in a message
gueue. Note that the label is red, meaning that the xQueueSend call blocked the task, which caused a context-
switch to ServerTask before the watchdog timer had been reset, which caused it to expire and reset the
system.

So why was xQueueSend blocking the task? By double-clicking on this event label, we open the Object History
View, showing all operations on this particular queue, “ControlQueue”, as illustrated below.

Timestamp Actor Event Block time Status Size Queuve
142.255 [} ControlTask O xQueueReceive Received post #27 1 b2z @2
143.805 [[] SamplerTask O xQueueSend Sent post #29 2 m22 @29
144684 [ControlTask O xQueueReceive Received post #28 1 m22 @29
147.391 . ControlTask O xQueueReceive Received post #29 0 Ooas
148.805 [[] SamplerTask O xQueueSend Sent post #30 1 30
149.913 [l ControlTask O xQueueReceive Received post #30 0 bO20
152.141 . ControlTask @ xQueueReceive 1772 Trying to receive... 0 Empty
153.805 [[] SamplerTask O xQueueSend Sent post #31 1 mat
152913 [ControlTask O xQueueReceive Received post #31 0 o2
156.295] ControlTask @ xQueueReceive 19.307 Trying to receive... 0 Empty
158.815 [[] SamplerTask O xQueueSend Sent post #32 1 m
163.805 |:| SamplerTask O xQueueSend Sent post #33 2 o3z 33
168.805 [[] SamplerTask O xQueueSend Sent post #34 3 032 @23 @b+
173.805 D SamplerTask O xQueueSend Sent post #35 4 032 [@b22 [« 35
175.602 . ControlTask O xQueueReceive Received post #32 3 032 @—33 [@bO¢ @—O3»
177.664 . ControlTask O xQueueReceive Received post #33 2 022 @O O3
178.805 [[] SamplerTask O xQueueSend Sent post #36 3 b3« @3k @O3s
183.805 D SamplerTask O xQueueSend Sent post #37 4 O3 [@—b3% @Ox @O
188.805 [] SamplerTask O xQueueSend Sent post #38 5 O¢ @m3s m3s @y 38
193812 [] SamplerTask @ xQueueSend Trying to send... 5 03¢ @33 @2k @—O37 @3s

The rightmost column shows a visualization of the buffered messages. We can see that the message queue
already contains five messages and probably is full, hence the blocking. But the ControlTask is supposed to read
the queue and make room, why hasn’t this worked as expected?

To investigate this, it would be interesting to see how the watchdog margin varies over time. We have this
information in the user event logging, and by using the User Event Signal Plot, we can plot the watchdog
margin over time. And by adding a CPU Load Graph on the same timeline, we can see how the task execution
affects the watchdog margin, as shown below.

percepio Phaedrus

SystemS
SENSING SOFTWARE

User Event Signal Plot = x|
16 B \Watchdog margin
14 Error messages
12 x
10 |4
E . Y m -,
s A\ \“ | \ * \‘
6 o avE
4 ua Y
2 S
]
No Value
0 100.000 200.000 300.000
i x|
B (startup)
B ControlTask
B ServerTask
[SamplerTask
B WatchdogISR

In the CPU Load Graph, we see that the ServerTask is executing a lot in the second half of the trace, and this
seems to impact the watchdog margin. ServerTask (bright green) has higher priority than ControlTask (dark
green), so when it is executing a lot in the end of the trace, we see that ControlTask is getting less CPU time.
This is an inherit effect of Fixed Priority Scheduling, which is used by most RTOS. Most likely, this could cause
the full message queue, since ControlTask might not be able to read messages fast enough when the higher
priority ServerTask is using most of the CPU time. This is an example of a Priority Inversion problem, as the
SamplerTask is blocked by an unrelated task of lower priority. A solution could be to change the scheduling
priorities, so that ControlTask gets higher priority than ServerTask. Let’s try that and see how it would look.

=) Horizontal View - 2views |1 [l - - - i T—— =S
Views Resolution Zoom Customize
User Event Signal Plot = x|
16 W \Watchdog margin
14
QX
10
8
6
4
2
0
0 100000 200,000 300,000 400000 500.000
CPULoad Graph =X
100% W (startup)
Iy * hhal. P |5
8% I | I.I L] Ly I II | I. L .I.] B SomplerTask
60 %
40%

0 100.000 200.000 300.000 400.000 500.000

Time: 76.788, Value: 10,00, Label: [Watchdog margin] 10 ms
U = —

The above screenshot shows the result of switching the task scheduling priorities between ServerTask and
ControlTask. The system now shows a much more stable behavior. The CPU load of SamplerTask (here red) is
quite steady around 20%, indicating a stable periodic behavior, and the watchdog margin is a perfect “line”,

always at 10 ms. It does not expire anymore — problem solved! (Note that the task colors has changed due to
the change in relative priority levels.)

percepio x‘\“dr"s

SystemS
SENSING SOFTWARE

Tracealyzer provides over 20 interactive views of the runtime world, connected in clever ways. It is available for

several leading real-time operating systems as well as for Linux. Learn more at our website www.percepio.com.

Stay tuned for the next Customer Case!

Precepio Tracealyzer available from Phaedrus Systems

www.phaedsys.com

info@phaedsys.com

PhaedruS

SystemS

