
SOLID SANDS
 from Amsterdam is the one-stop shop

for C and C++ compiler testing,
validation and safety services.

Postbus 7897 | 1008 AB AMSTERDAM | The Netherlands

chills
Typewritten Text
Distributed in the UK by Phaedrus Systems www.phaedsys.com

chills
Typewritten Text

chills
Typewritten Text

http://www.phaedsys.com/principals/solidsands/

THE IMPORTANCE OF COMPILER QUALITY

Compilers are essential during all stages of application development and systems

integration. However, they are also very complex and a single error can create huge

problems, both during development and during deployment of the generated code.

Therefore it is extremely important to have confidence in the quality of the compiler.

The potential cost of incorrectly generated code far outweighs the investment

into a compiler quality control system.

Besides that, safety standards require that confidence in software tool-chains is

brought to appropriate levels. Creating this confidence in a compiler starts with

accurately testing the compiler for conformance, correctness and robustness.

HOW YOU CAN ACHIEVE A HIGH LEVEL OF COMPILER QUALITY

The SuperTest compiler test and validation suite

has proven to offer its users confidence and

quality in the compilers they develop or use.

Professional compiler developers, software

quality engineers and compiler users all

appreciate the many hand-crafted and

generated test files in SuperTest, providing

millions of conformance tests. This also includes

many tests dealing with compiler internals such

as analyses, transformations and optimizations.

This set of tests and its special features are

constantly growing. The framework includes

both conformance and diagnostic tests. Diagnostic tests verify that

the compiler reports errors for incorrect programs. The framework also has facilities

to support selective testing of subsets of the suite, which can be used for example

to re-run previously failed tests. The straightforward POSIX based user interface

seamlessly integrates into any compiler development environment, allows for easy

addition of new tests and provides cross platform validation support.

UNIQUE FEATURES OF SUPERTEST

Next to what is expected from a compiler test and validation suite, like C language

conformance, correctness and quality checks, SuperTest offers:

 Tests for C++ and C++11

 Remote and Parallel testing

 Clear reporting in HTML

 Easy addition of tests

 Powerful and flexible test generator

 …..

ABI-Tester
The ABI-Tester for C aims to expose errors in calling conventions and binary

interfaces by generating pairs of files that contain the caller and callee respectively.

It can be used to verify ABI-compliance within a single compiler, but also

between different versions of the same compiler, or even different

compilers for the same target.

Depth suites
In the C standard, the data model is left implementation defined. This means

that test-suites have to limit their assumptions about arithmetic. SuperTest’s

Depth-suites are generated for specific data models and so have detailed knowledge

about the boundaries of arithmetic. Depth-suites do extremely thorough and

exhaustive testing of arithmetic operations with up to 5 operands. There are

already about 30 different Depth-suites included in SuperTest, but on

request we can generate a customized suite.

Tempest (TEMPlate Expander for SuperTest)
This unique and flexible production-rule driven test generator can be used

to generate random variations of tests. It allows the generation of complex

programs that are predictable in their behavior due to the semantics of the

generator-script-based productions rules. This enables specific compiler issues

to be explored in more depth by generating a range of tests to extend the

associated test-breadth, ensuring that there are no further related issues.

“...Configuring SuperTest to do what we wanted was extremely straightforward,
which meant that we were up and running with compiler testing within a few days.”

“...Right from the start we believed that the test coverage of SuperTest was
significantly better than other compiler validation suites on the market, and
certainly better the the GCC test suite. Over the past few years that has proved
true, because SuperTest has identified several generic bugs in new releases of
GCC that were not picked up by the GCC suite, some of which were relatively
severe code generation issues.”

“...SuperTest helped us to find the problems in our compiler far more quickly
than otherwise would have been possible. In comparison with the license and
maintenance fees, we saved more than twice the amount in our efforts in
improving the compiler quality.”

“...Although it’s not SuperTest’s primary function, we also use it to measure code
size and performance. The beauty of using it for this purpose is that all of
SuperTest’s validation tests are relatively small en terms of program size, which
means that discovering why a section of code has changed either in size or
performance is relatively straightforward.”

“...The test cases are well documented and tell you exactly where the problem is.

“...SuperTest is a really valuable tool for us. The verbose mode is wonderful for
pointing me at the failing section of code. SuperTest found us implementation holes,
implementation bugs, documentation errors, simulation bugs and many regressions.
It is my primary regression test bench. I’d start using it very early in future compiler
projects.”

“...SuperTest detected a lot of errors during our developments. Running the test
suite successfully gave us enough confidence about the quality of each compiler
version to be released to a next stage.”

“...The other big advantage in terms of timing was SuperTest’s fast run-time, which
allowed us to achieve over 99% test coverage within a few weeks. That meant it
offered very good value for money.”

“.. One of the strengths of SuperTest was that it delivered on its promise of being
an ‘out-of-the-box’ solution.”

SUPERTEST EXPERIENCE

