
C Compiler
Validation for

Embedded
Targets

Qualifying Compilers
for Use in Safety-

Critical Projects

First Edition

 by

Mrs Olwen Morgan CITP, MBCS

and

Eur Ing Chris Hills BSc , C. Eng.,

MIET, MBCS, FRGS, FRSA

The Art in Embedded Systems
comes through Engineering discipline.

C

Compiler
Validation

2library.phaedsys.com

Contents

What is compiler validation? 3

Who needs compiler validation? 3

Why the compiler developer’s testing may not be enough 4

What does a validator do? 5

On-host and on-target validation times 5

Front-end and back-end testing 6

Validation reports and transcripts 6

On-host and on-target validation times 6

Conclusion 7

Compiler
Validation

3 library.phaedsys.com

C Compiler
Validation for

Embedded
Targets

Qualifying Compilers for Use in
Safety-Critical Projects
These notes have been prepared for those

investigating validation services for C cross-compilers

for embedded targets. Some may find validation

unfamiliar and the aim of this document is to explain

the essentials so that it is clear what to expect from

Phaedrus Systems compiler validation services.

What is compiler validation?

Compiler validation is essentially highly controlled,

repeatable and reproducible testing of a compiler using a

validation suite - a recognised set of test programs. The

purpose of such testing is to provide a reliable indication

of how well a compiler complies with the standard for

the language that it implements.

Whilst that is the simple explanation there is a lot

of subtle complexity and rigour involved, coupled with

a deep understanding of the C language standard

(ISO 9899) and laboratory standard testing methods.

For example Phaedrus Systems uses one of the worlds

best C Language Compiler Test Suites and custom

hardware test rigs. Our validator has several decades

experience of working on high SIL projects, compiler

validation and critical systems. Compiler validation is

not something that should be undertaken by developers

on a development PC.

Also there is a difference between general compiler

validation and on-target validation. Phaedrus Systems

understands the critical differences and has adapted the

test suites and test rig accordingly.

Furthermore, not only must the documentation of

the results of the tests be of a standard for the Project

Certification Body but of a standard suitable, if necessary,

to be used as evidence in a Court of Law.

The selection of a suitable test suite is paramount. Not

everything called a “Test Suite” is suitable for validating

a C compiler to the required standard: there are very

few Test Suites that are acceptable to the Certifying

Bodies. Phaedrus Systems’ validator has experience of

the leading C compiler test suites.

Who needs compiler validation?
Typically compiler validation is sought in connection

with the development of safety-critical, security-critical

or mission-critical systems. Until recently, compiler

validation has been recommended but rarely formally

required for the development of safety-related software

Compiler
Validation

4library.phaedsys.com

complying with safety standards such as IEC 61508

Part3, ISO 26262 (Automotive), EN 50128 (Rail), ISO 60880

(Nuclear,), ISO 62034 (Medical), and/or comparable

provisions in similar industry-specific standards. Most

validations up to 2014 have been for large-scale system

developments. From 2014 this is beginning to change as

a result of technical advances in microcontroller design.

MCU’s and software are being increasingly used in

critical systems, software is increasing in volume and

complexity and is controlling more critical functions.

Consequently Certification Bodies are starting (as of

2015) to request that compiler validation is done on

the actual target MCU used on the project, with the

appropriate compiler switches and flags set.

Various microcontroller manufacturers now

offer safety-rated microcontrollers. An increasingly

popular form is the dual-core lockstep microcontroller

for which regulatory bodies are beginning to issue

safety certifications covering the hardware. These

microcontrollers offer very high safe failure fractions

through their physical and logical design. One weakness,

however, is that both cores run the same object-code

image. For software to match the safe failure fraction

achieved by the hardware, it is now becoming more

important for the critical parts of development tool

chains to be proven fit for purpose.

To date many compilers used in embedded system

development have been accepted as “proven in use”, that

is they have a history of reliable operation. This only

works for compilers supplied as object code, where, for

example there 10,000 users of the same binary and with

a fixed set of components. “Proven in use” would not

hold for a compiler supplied in source form, for example

GCC, where the users build from source code or deploy

a variable set of components.

Developments in hardware safety are causing a shift

towards the use of formally validated compilers where

previously validation would not have been required.

Developers can now expect regulatory bodies to require

compiler validation more and more often for critical

system developments, and increasingly the requirement

will be for on-target validation.

Why the compiler developer’s
testing may not be enough

Most compiler suppliers make extensive use of

recognised test suites, such as SuperTest, Perennial or

Plum-Hall, in their product development. This however,

can really only establish that a compiler is qualified for a

range of critical uses. It does not establish that a compiler

is fit for purpose in any particular use. For embedded C

cross-compilers it is important to understand why this is.

The C language standard (ISO 9899) makes clear that

an implementation is a specific configuration of hardware

platform and compiler software used under particular

compiler invocation options - the specific set of switches

and options used when setting the target MCU.

However thoroughly a compiler vendor may test his

Client Speci�c
External SSD Custom Computer Hardware

Controlled OS
(Windows, Linux, Solaris)

Compiler Under Test

JTAG Debugger Client Speci�c
Target Hardware

Client Speci�c TestsClient Speci�c
Test Suite & Results

Phaedrus Systems On-Target Compiler Validation Test System

Client Test Suite & Results
on cloned SSD or DVD

The client may be required to lend a target board.
Test Report is supplied in hard copy with a copy of Test Report,
test suite and all scripts and results on SSD or DVD.

Compiler
Validation

5 library.phaedsys.com

of the integrity of the host platform configuration.

(f) Running the tests on a specified externally

connected target via a debugging adaptor. The

parameters of the debugging adaptor need to be recorded

and understood.

(g) Analysing any test failures to determine their

causes (together with any test re-runs required). Test

failures may or may not be significant and in some cases

can be expected with a specific implementation on a

specific target.

(h) Preservation of the test transcript produced by

the test tool. All data must be recorded and archived.

(i) Preparation and issue of a test report to the

rigour and standards required.

(j) Issue of a test certificate.

These steps are conceptually very simple but the

key constraints are that they must be both repeatable

and reproducible. To be repeatable it must be possible

for the any qualified tester using the same test system

to get the identical results on successive test runs.

To be reproducible it must be possible for a different

tester using a different but technically compatible test

system to get the same results on separate test runs. In

practice this means that testing must be controlled to the

same standards that are applied to certification testing

laboratories.

Testers must be specially trained in order to be

qualified to undertake testing to this degree of rigour.

Most systems engineers, even very experienced ones, are

not actually qualified to this level and most in-house test

systems seen by the authors would not be fit-for-purpose

in compiler validation.

On-host and on-target validation times
On modern PC hardware a test suite containing 10’s

of thousands of tests can usually be run on-host several

times in a day.

On-target testing takes considerably longer because

the total elapsed time is dominated by the time required

to upload tests to the target environment and download

the results from that environment. Depending on it’s

design a large test suite may take several days, or even

weeks to run on-target if the turn-around times are long,.

Indeed there may be occassions where it is not possible at

all: some test suites are not designed in such a way that

they cannot even be be used on-target.

compiler, it is likely that:

(a) The testing will have been done on-host (using a

simulator or emulator rather than real target hardware)

because the test suite may not fit on the target or on-

target testing may not be flexible enough or can take too

much time.

(b) Testing has not been done with exactly the same

compiler options that are used in a specific embedded

development project.

NOTE: - Embedded C Compilers may be using

a variant of ISO-C 9899:1990, 1995, 1999 or 2011 with

extensions and/or restrictions when running on the

specific target.

Consequently the compiler developer’s testing

cannot test the exact implementation that the embedded

developer will be using. This is not a minor issue:

a small change in the compiler options can have a

huge impact on the generated object code. Compiler

validation services fill this gap by performing tests

under the implementation options used for a particular

development project and as far as possible on actual

target hardware.

What does a validator do?
By “validator” we mean a qualified and suitably

experienced engineer who performs validation testing.

The validator’s task includes the following:

(a) Setting up and configuring a test host (usually

a PC) to a known and repeatable initial state under a

specified version of the host operating system. This

is not as simple as it sounds and Phaedrus Systems

Validators build custom PC’s specifically for Compiler

Validation as standard PC’s are not suitable. Also the PC

operating system has to be maintained to a known state.

(b) Installing a specified version of the compiler

to be tested. This will also include specific settings,

flags and switches all of which are required to be fully

documented.

(c) Installing suitable test driver software. Again

this has to be rigorously documented and recorded

using sound methods. How the test software is set up

will be crucial to the running of the tests.

(d) Preliminary testing to ensure that the programs

of the test suite can be satisfactorily run and their results

are correctly gathered by the test driver software.

(e) Running the tests on-host to provide assurance

Compiler
Validation

6library.phaedsys.com

An evolving practice in performing validations for

clients is that a first validation is conducted on the host.

Then a trial validation is conducted on the required

target simply to find out how long it will actually take

to run on a specific target (MCU, clock speed, memory

etc. all play a part). Clients for validation services should

therefore be prepared for providers of such services to

take a little while before giving definite elapsed time

estimates for validation work. For the moment it is the

validation provider’s responsibility to ensure that:

(a) Validation clients understand that for a

previously untested compiler/target combination, initial

estimates will be subject to uncertainty,

(b) Validators are themselves prepared to undertake

investigative work to resolve any time uncertainties

before quoting specific terms and costs to clients.

It is clearly in the best interests of both clients and

providers that they make allowance for initial time

uncertainties until experience of running a large test

suite has accumulated to provide a better basis for

estimation

Front-end and back-end testing
Different test suites test different aspects of a

compiler’s behaviour. Basic conformance suites test

that the compiler observes the standard syntax of the

language and can correctly compile at least one instance

of each language construct.

Tests that do this are very good exercisers of a

compiler’s front end. Among contemporary C compilers,

it is now relatively unusual to find serious errors in their

front ends.

By comparison the back-ends (i.e. the code generators)

of compilers are less well tested. This is particularly true

of C compilers where many compiler options bear on

technical matters at the object-code level. To exercise the

back-end needs either a large test suite (such as SuperTest)

whose design is based on a boundary-value test coverage

strategy, or a set of tests generated by a random stress

test generation tool.

In practice, and in aid of repeatability and

reproducibility, the most controllable approach is the

use of a large fixed test suite specifically designed to

cover an appropriately strong domain of boundary-

value test cases. The strength of such test suites is that

they provide a strenuous exercise of a code generator in

how it handles arithmetic, which is generally of more

concern to embedded system developers than front-end

compliance.

Validation reports and transcripts
Validation reports must contain at least the following

elements:

(a) A technical description of the steps taken to

configure the test system and run the tests,

(b) Resolution of any test failures,

(c) Transcripts of all test runs as produced by the

test driver software,

(d) A certificate signed by the tester confirming that

the tests have been done as described and that the test

transcripts are authentic.

For ease of presentation test transcripts are

conventionally presented on digital media with all other

elements of the test report as printed items.

It is normal practice for validators to retain copies of

results for reference purposes subject to appropriate Non-

Disclosure Agreements (NDAs). Phaedrus Systems does

this by archiving the SSD used for the tests including

all test documentation and test results. At any time all

evidence of the tests run can be produced and, if needed,

the tests can be repeated in an identical environment.

Currently the authors also recommend to clients

that the results of the tests should be made available to

compiler and test suite developers, again under NDA,

as this is likely to be of help to them in eliminating any

bugs found by on-target testing.

A further convention is that the validation provider

retains all Intellectual Property Rights (IPR) in test

reports and transcripts. The validator then has the legal

right to require that any copies presented for regulatory

approval are as produced by the tester and do not have

any parts removed by the client. (This has been known

to happen and “adjusted” test reports supplied to the

Regulators for Approval and Certification.)

On-host and on-target validation times
Depending on the scope of service offered, validation

providers may offer further advice in dealing with

regulatory authorities regarding the documentation of

compiler validation procedures in safety cases.

It may happen that errors are found during testing

for which the developer needs to take mitigation actions

Compiler
Validation

7 library.phaedsys.com

Compiler
Validation

7

during project development. A qualified validator

should have the expertise to advise on such mitigations

and how they can be tested. Robustness of mitigation

can be demonstrated by re-running relevant failing

test programs from the test suite and then running the

programs that test the mitigation.

When this is done under laboratory conditions, the

advising validator must not participate in any retests

where he/she has had a role in specifying what the

mitigation tests should be. Ideally this should also be

avoided in testing that is not subject to laboratory-level

certification procedures. For the moment, however, a

pragmatic approach is acceptable provided that the

validator’s role in post validation advice is subject

to agreement between the client and the validation

provider.

Conclusion
Phaedrus Systems hopes that prospective validation

clients will find these notes helpful and will be glad to

answer any specific queries that they may arise

The Art in Embedded Systems
comes through Engineering discipline.

QAC-EWB

C Compiler Validation for Embedded
Targets

First edition July2016

© Copyright Chris A Hills & Olwen Morgan 2016

The right of Chris A Hills & Olwen Morgan to be

identified as the authors of this work has been asserted

by them in accordance with the Copyright, Designs and

Patents Act 1988

Phaedrus Systems Library
The Phaedrus SystemsLibrary is a collection of useful

technical documents on development. This includes

project management, integrating tools like QA·C to IDE’s,

the use of debuggers, coding tricks and tips. The Library

also includes the QuEST series.

Copies of this paper (and subsequent versions) with

the associated files, will be available with other members

of the Library, at:

http://library phaedsys com

